Nonparametric Recursive Method for Kernel-Type Function Estimators for Censored Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Nonparametric quantile regression for twice censored data

We consider the problem of nonparametric quantile regression for twice censored data. Two new estimates are presented, which are constructed by applying concepts of monotone rearrangements to estimates of the conditional distribution function. The proposed methods avoid the problem of crossing quantile curves. Weak uniform consistency and weak convergence is established for both estimates and t...

متن کامل

Turnbull’s Nonparametric Estimator for Interval-Censored Data

In most applications, the data may be interval-censored. By interval-censored data, we mean that a random variable of interest is known only to lie in an interval, instead of being observed exactly. In such cases, the only information we have for each individual is that their event time falls in an interval, but the exact time is unknown. A nonparametric estimate of the survival function can al...

متن کامل

Kernel Ridge Estimator for the Partially Linear Model under Right-Censored Data

Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...

متن کامل

Gamma Kernel Estimators for Density and Hazard Rate of Right-Censored Data

The nonparametric estimation for the density and hazard rate functions for right-censored data using the kernel smoothing techniques is considered. The “classical” fixed symmetric kernel type estimator of these functions performs well in the interior region, but it suffers from the problem of bias in the boundary region. Here, we propose new estimators based on the gamma kernels for the density...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Stochastic Analysis

سال: 2020

ISSN: 2689-6931

DOI: 10.31390/josa.1.3.04